Achieving Accuracy Improvements for Single-Point Incremental Forming Process Using a Circumferential Hammering Tool

نویسندگان

چکیده

The paper presents a novel solution for improving the accuracy of wall area parts manufactured by single point incremental forming. Thus, forming tool with special design that works according to principle circumferential hammering is deployed, direct effect conditions and consequently dimensional part. research focused on an experimental study frustum-of-cone shapes from sheet metal blanks DC05 deep drawing steel 1 mm thickness. A typical customary technological setup used process, without any additional elements, two tools, hemispherical one, which use effect. Several preliminary tests using both tools were performed in order prove part can be significantly improved tool. was further expanded investigate influence three factors: spindle speed, feed rate configuration. Using full factorial plan experiments results 32 test runs processed. All machined adequately, free material fracturing. Based achieved machining walls, precision mathematical models developed prediction those areas. validated practice, as predicted accuracies matched results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Fracture Depth of Al/Cu Bimetallic Sheet in Single Point Incremental Forming Process

Single point incremental sheet forming (SPISF) has demonstrated significant potential to form complex sheet metal parts without using component-specific tools and is suitable for fabricating low-volume functional sheet metal parts economically. In the SPIF process, a ball nose tool moves along a predefined tool path to form the sheet. This work aims to optimize the formability and forming force...

متن کامل

Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network

In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...

متن کامل

The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet

The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...

متن کامل

Optimization of the single point incremental forming process for titanium sheets by using response surface

The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution... Moreover considera...

متن کامل

Single Point Incremental Forming of Polymers

The aim of the present paper is to evaluate the possibility of producing low-cost, small-batch, polymer sheet components by means of single point incremental forming (SPIF) at room temperature. During the research work, five different thermoplastic materials were incrementally formed into cones with an increasing wall angle on a conventional CNC milling machine. In designed experiments, signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2021

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met11030482